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A new method for assessing the similarity of crystal structures

is described. A similarity measure is important in classi®cation

and clustering problems in which the crystal structures are the

source of information. Classi®cation is particularly important

for the understanding of properties of crystals, while clustering

can be used as a data reduction step in polymorph prediction.

The method described uses a radial distribution function that

combines atomic coordinates with partial atomic charges. The

descriptor is validated using experimental data from a

classi®cation study of clathrate structures of cephalosporins

and data from a polymorph prediction run. In both cases,

excellent results were obtained.
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1. Introduction

Comparing crystal structures is important in both classi®cation

and clustering problems. Classi®cation is important for the

understanding of the relation between physical properties and

the underlying structure of materials. The speci®c packing of

molecules in a crystal directly in¯uences the physical proper-

ties of compounds. As an example, in crystal engineering

crystal packings are classi®ed according to intermolecular

interactions (Perlstein et al., 1996; Moulton & Zaworotko,

2001; DeGelder et al., 2001; Hollingsworth, 2002; Ilyushin et

al., 2002). A second application of the similarity measure is in

the clustering stage of ab initio crystal structure prediction

(Verwer & Leusen, 1998; Lommerse et al., 2000; Motherwell et

al., 2002). In this process hundreds or thousands of different

hypothetical crystal packings for the same molecule, called

polymorphs, are generated. They need to be clustered to

obtain representative subsets for which analysis and geometry

optimization is feasible.

For the clustering and classi®cation of crystal structures, a

properly de®ned descriptor and a similarity function applied

to this descriptor are both required. In the literature several

requirements for both the descriptor of crystal structures and

the similarity function have been described (Dzyabchenko,

1994; Andrews & Bernstein, 1995; FaÂbiaÂn & KaÂ lmaÂn, 1999).

The most obvious requirement for a descriptor±similarity

combination is that more dissimilar crystal structures result in

larger dissimilarity values. Although this seems trivial, several

well known descriptors do not generally satisfy this require-

ment (Dzyabchenko, 1994; Andrews & Bernstein, 1995; Van

Eijk & Kroon, 1997; FaÂbiaÂn & KaÂ lmaÂn, 1999). Many

descriptors require a choice of origin or some other setting.

Among such descriptors is the combination of unit-cell para-

meters and fractional coordinates. A descriptor based on

reduced unit-cell parameters can vary signi®cantly with only

minor lattice distortions (Andrews et al., 1980; Andrews &

Bernstein, 1988). While it is in some cases possible to adapt



the similarity function to deal with such instabilities, we

believe that this issue should be addressed by using a proper

descriptor.

Recently, powder diffraction patterns have been used to

compare the crystal structures of both simulated and experi-

mental structures (Karfunkel et al., 1993; De Gelder et al.,

2001). This descriptor does not suffer from the problems

mentioned above and has an interpretable physical meaning.

A potential disadvantage is that it is not always unique under

certain conditions (Karfunkel et al., 1999).

The current article investigates a new direct-space

descriptor for comparing crystal structures. It is based on a

radial distribution function and includes the electronic prop-

erties of the atoms. The descriptor will be described in detail in

x2, which will also introduce the dissimilarity measure used to

express the dissimilarities between structures using this

descriptor.

The validation of the descriptor and the dissimilarity

measure is carried out in two ways; ®rst, by comparing the

calculated dissimilarity values with empirical values and,

secondly, by comparing a clustering created from the calcu-

lated dissimilarities with an empirical clustering. Empirical

dissimilarity values, however, are not normally known on a

continuous scale, but are expressed on a binary scale (identical

or not) or are described textually using visual inspection. To

our knowledge, there is no data set available from the litera-

ture in which the dissimilarities between a set of crystal

structures are known on a continuous scale, which is needed

for a quantitative validation of the descriptor and its dissim-

ilarity measure. The two data sets for which empirical

dissimilarity values and the clustering or classi®cation are

obtained are described in x3. These values are used to validate

the application of the descriptor and dissimilarity measure.

Experimental details are given in x4 and x5 discusses the

calculated dissimilarity values and clusterings for the two data

sets.

2. The descriptor

To be able to compare crystal structures a descriptor is needed

that represents the structure in mathematical form and a

dissimilarity measure that expresses the differences between

two crystal structures using the descriptor. The resulting

dissimilarity values can then be

used to cluster or classify the crystal

structures by grouping together

structures which have a low

dissimilarity.

Crystal structures can be

uniquely represented by a radial

distribution function (RDF)

describing the distribution of

neighboring atoms around a central

atom. Each neighboring atom gives

rise to a peak in the function. RDFs

are independent of cell choice, and

can be physically interpreted. RDFs

have been used to describe molecules with the goal of simu-

lating IR spectra (Gasteiger et al., 1996; Hemmer et al., 1999),

and have been used in the form of a radial distribution matrix

for crystals (Karfunkel et al., 1999). In the latter application

each row in the distribution matrix is an RDF describing the

interatomic distances for one atom-type pair. As such, the

descriptor does not differentiate between, e.g. hydroxyl and

carbonyl O atoms.

In our approach the RDF is adapted to include more

speci®c information about the atoms. To do so, the RDF is

weighted by the electrostatic interactions. To indicate the

inclusion of electrostatic information in the descriptor, we will

refer to this as the electronic radial distribution function, or

ReDF. The reason for including electrostatics is the assump-

tion that these play a major role in crystal packing (Pauling &

DelbruÈ ck, 1940; Moulton & Zaworotko, 2001; Desiraju, 1995).

By including partial atomic charges, ReDF focuses on atom

groups with large partial charges, in particular functional

groups, and differentiates between attractive interactions,

between oppositely charged atoms and repulsive interactions.

An atomic ReDF describes the distribution of coulombic

interactions of one atom with the surrounding atoms; the

ReDF for the crystal structure is obtained by summing all the

atomic ReDFs for all N atoms in the asymmetric unit

ReDF�r� �
XN

i�1

XM

j�1

qiqj

N � ri;j

��rÿ ri;j�; �1�

where M is the number of neighboring atoms within a radius r,

qi and qj are partial atomic charges of the atoms i and j, and �
places the electrostatic interaction at the right distance by its

de®nition ��x� � 1 if x � 0 and ��x� � 0 if x 6� 0. The function

is scaled for the number of atoms in the asymmetric unit, N.

The ReDF in (1) is a continuous function and is imple-

mented as a discrete function with S intervals of size b,

hereafter termed bins

ReDF�s� �
XN

i�1

XM

j�1

(
qiqj

N � ri;j

D �s� 1
2�bÿ ri;j

� �)
; �2�

where s is the bin index and s � 0::S, ri;j is the distance

between the two atoms i and j, qi and qj are partial atomic

charges, and D is
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Figure 1
ReDF for an arti®cial crystal structure with a positively and a negatively charged atom (a � 7:97,
b � 10:26, c � 18:77 AÊ , � � � �  � 90�).



D�x� � 1 if jxj < 1
2 b

0 if jxj � 1
2 b.

�
�3�

Fig. 1 shows the ReDF for an arti®-

cial crystal with two atoms in the

unit cell, a positively and a nega-

tively charged atom (a � 7:97,

b � 10:26, c � 18:77 AÊ ,

� � � �  � 90�). The ®rst, nega-

tive peak is the interaction between

the two atoms at exactly the

bonding distance. The other nega-

tive peaks are also peaks between

two oppositely charged atoms. The

overall decrease in intensities is

caused by the 1=r term in the ReDF

equation. The ®rst positive peak is

related to the translation along the a

axis, i.e. �a, and the second peak to

the translation along the b axis. The

third peak is the translation in the

direction a� b; for this orthogonal

structure there are twice as many

contributions to this peak as for the

®rst two positive peaks, resulting in

the higher intensity.

The ReDFs of four experimental

crystal structures, described in a

later section, are given in Figs. 2 and

3. They show a few distinct high

intensity peaks and many smaller

peaks. The locations of these peaks

are speci®c for the crystal packing:

Figs. 2(a) and (b) show the ReDFs of

two cephalosporin structures from

the same class, while (c) shows the

ReDF for a different packing.

Fig. 3(a) shows the function for a

simulated estrone crystal structure;

a similar pattern can be observed.

Fig. 3(b) shows the effect of cutting

away peaks with intensities lower

than a speci®c threshold. It was

found that the cut-off value must be

around 20% of the highest peak.

Cutting away the smaller peaks

emphasizes the major features in

the ReDF and leads to better

discrimination.

Owing to the nature of the ReDF

(Mayo et al., 1990), one can expect

positive contributions at those

distances which match the transla-

tional symmetry in the crystal.

However, since such contributions

can be canceled out by other,

negative contributions they do not
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Figure 3
ReDF for one of the simulated estrone structures shown in (a), and the effect of cutting away peaks
below 20% of the intensity of the highest peak in (b).

Figure 2
Sample ReDFs for cephalosporins (a) A9, (b) A10 from the same class A and (c) N19 from a different
class N.



always show up in the ReDF. Moreover, peaks not related to

translational symmetry are especially interesting, because they

provide information additional to periodicity.

Fig. 4 shows the ReDF for cephalosporin structure A1 (top)

and the locations of peaks caused by the translational

symmetry. Clearly, a signi®cant number of peaks are not

caused by translational symmetry and contain additional

structural information. Each peak consists of many contri-

buting atom pairs resulting in a netto positive (repulsive) or

negative (attractive) peak in the function.

Dissimilarities between crystal structures are represented

by the difference between the two corresponding ReDFs. For

this, a weighted cross correlation (WCC) is used (De Gelder et

al., 2001), which is applied to the high intensity peaks of the

ReDF.

3. Data

Two data sets are used in this article to show the application of

the descriptor. The ®rst data set contains the experimental

crystal structures of the inclusion complexes of cephalos-

porins. These 20 structures are classi®ed into seven classes, but

there is no information about the similarity between structures

other than belonging or not belonging to the same class. To

our knowledge, there is no data set available from the litera-

ture in which the dissimilarities between all crystal structures

are known on a continuous scale, which would be ideal to

validate the proposed descriptor and its dissimilarity measure.

The second data set contains simulated polymorphs of estrone,

for which detailed information is available about the dissim-

ilarities between the structures, as explained below. The 48

structures in this data set are classi®ed into 25 classes based on

visual inspection, as described below.

3.1. Cephalosporin data set

The cephalosporin data set consists of 20 clathrate struc-

tures of cephalosporins (Kemperman et al., 2000; De Gelder et

al., 2001). The 20 compounds were classi®ed into seven

isomorphic classes based on their crystal form: A, B, C, D, E, F

and N. Class A has ten structures, all in the C2 space group.

Class B has four structures in the P212121 space group. Classes

C, D, E and F all have one structure, and have space groups

P21, C2, P1, and P21 respectively. Class N has two structures

which both have the P21 space group. A brief overview of the

unit-cell parameters of this data set is given in Table 1. Further

details on these structures can be found in Kemperman et al.

(2000) and De Gelder et al. (2001).

For a set of 20 crystal structures, there are 190 unique pairs

of structures [1
2 � n � �nÿ 1� � 1

2 � 20 � 19]. The dissimilarity

associated with each pair is unknown. However, it is known

whether the pair is a within-cluster or a between-cluster pair,

i.e. the dissimilarity of a pair of structures from the same class

is marked as within-cluster, and for a pair of structures that do

not belong to the same structure class it is marked as between-

cluster.
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Table 1
Unit-cell parameters of the cephalosporin data set, grouped into seven
clusters (A, B, C, D, E, F and N).

Cluster a b c � � 

A 23.47 7.12 14.93 90.0 108.27 90.00
23.42 6.97 15.00 90.0 110.41 90.00
23.46 7.12 14.89 90.0 108.57 90.00
23.41 7.11 14.81 90.0 108.15 90.00
23.39 7.20 14.76 90.0 108.58 90.00
23.02 7.15 14.55 90.0 104.64 90.00
23.40 7.06 14.92 90.0 109.80 90.00
23.43 7.11 14.88 90.0 108.19 90.00
23.49 7.08 14.85 90.0 108.95 90.00
23.45 7.03 14.84 90.0 110.55 90.00

B 7.11 21.72 30.96 90.0 90.00 90.00
7.00 20.99 30.69 90.0 90.00 90.00
7.11 21.86 32.31 90.0 90.00 90.00
7.09 21.27 31.00 90.0 90.00 90.00

C 14.92 7.38 20.50 90.0 105.77 90.00
D 23.56 7.13 18.69 90.0 109.38 90.00
E 7.07 10.70 14.23 87.15 79.00 89.74
F 15.40 7.30 23.57 90.00 99.35 90.00
N 10.87 9.51 12.39 90.00 98.70 90.00

10.91 9.41 12.20 90.00 98.53 90.00

Table 2
Visual criteria used to classify the 1128 dissimilarities between the 48
crystals.

The quali®er ++ represents almost identical, + similar,ÿ dissimilar. See text for
a more speci®ed de®nition.

Dissimilarity
class

Number of
pairs

Unit-cell
parameters

Placement
in cell

Orientation
in cell

Identical 8 ++ ++ ++
Similar 21 + + +
Dissimilar 1099 ± ± ±

Figure 4
This ®gure shows that the nature of the peaks in the ReDFs is not only
describing the translation symmetry of the crystal structure: the top
function is the ReDF of cephalosporin A1 after applying the peak
selection. The bottom black line shows the locations originating from
translation symmetry.



3.2. Estrone data set

The second data set consists of 48 simulated crystal struc-

tures of the estrone steroid, which has three known naturally

occurring polymorphs (CSD refcodes: ESTRON10,

ESTRON11 and ESTRON12; Busetta et al., 1973). Two

thousand polymorphic structures were generated using the

Polymorph Predictor module in Cerius2 (Verwer & Leusen,

1998; Molecular Simulations Inc., 1997). The method used by

this program consists of a generation step where random

crystal structures are generated. After the removal of dupli-

cates, the energies of the remaining 1278 structures were

minimized using a force ®eld. For this data set, the estrone

molecule was kept rigid and the P212121 space group

symmetry was imposed during the initial generation. The

energy minimization was carried out with the DREIDING-

2.21 force ®eld using Ewald summation to calculate the van

der Waals and Coulomb interactions. Electrostatic potential

(ESP)-derived atomic charges for estrone were calculated

using GAUSSIAN94 (Frisch et al., 2001) with the HF/6-31G*

basis set.

From the 1278 structures, a set of 48 structures were

selected in the low-energy region which represent the crystal

structures that might be found in nature. The densities of these

simulated structures are in the range 1.043±1.173 g cmÿ3, while

the experimental structures have densities around 1:2 g cmÿ3.

It is common for predicted crystal structures to have different

densities, due to the force ®eld used. The energies are in the

region of 21.06 kJ molÿ1.

To classify the crystal structures, the 1128 pairwise

comparisons between the 48 estrone structures (1
2 � 48 � 47)

were manually grouped into three dissimilarity classes by

visual inspection. Classi®cation of the pairwise dissimilarities

was carried out by trying to overlap the crystal structures.

However, an attempt has been made to quantify the differ-

ences in terms of packing parameters. These properties were

taken into account during the clustering: cell parameters,

placement in the cell and orientation in the cell (see Table 2).

The cell parameters were compared and show big differences

(forÿ), small differences (for +) or hardly any differences (for

++). The placement in the cell is compared visually: ++ indi-

cates that the four molecules in the unit cell can be placed on

top of each other perfectly within 0.01 AÊ , + indicates that they

®t well and ÿ means that they cannot be aligned simulta-

neously. Similarly, for the rotations around the various axes,

++ indicates that the molecules in the two structures have an

identical orientation, + indicates a rotation up to ca 10�.
Larger rotations do not occur in the data sets, as the actual

molecular packing becomes different. The number of dissim-

ilarity classes is chosen to re¯ect the number of visually

distinguishable dissimilarity types in the above analysis.

The ®rst dissimilarity class is called identical, as the struc-

tures are visually identical. The second class is called similar

and consists of pairs of crystal structures that show small

displacements or small rotations of the molecules in the unit

cell, but the location of the molecules in the cell and the cell

parameters itself are similar. The third class is called dissimilar

and consists of all dissimilarities not classi®ed in the other two

classes. No further distinction between dissimilarities can be

made in this class. Note that the ®rst two classes have far fewer

structure pairs than the dissimilar class, which re¯ects the

diversity of the data set.

Based on the visually determined dissimilarities, identical

and similar crystal structures were grouped, leading to 25 true

classes, labeled A to Y. Table 3 shows the members of each

class. The diversity of the unit-cell axes between the structures

is apparent from this table. The similarity within classes is

mostly clear, for example in class A.
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Table 3
An overview of the estrone dataset showing the lengths a, b and c of the
orthogonal unit-cell axes of the 48 structures, and the direction (a, b or c
direction) and form of the hydrogen-bond chain (linear or zigzag).

Cluster a b c

Direction of
hydrogen-bond
chain

Form of
chain

A 7.063 11.530 19.481 c Zigzagged
7.971 10.262 18.772 c Zigzagged
8.427 10.958 17.286 c Zigzagged

B 7.742 9.110 23.163 c Linear
7.658 9.188 22.419 c Linear
7.691 8.865 23.262 c Linear
7.706 8.910 24.038 c Linear

C 6.457 12.421 19.679 c Zigzagged
6.678 13.305 18.966 c Zigzagged

D 5.946 12.940 20.499 c Zigzagged
6.332 13.037 19.066 c Zigzagged

E 8.687 10.067 18.082 b Linear
9.381 9.432 18.147 b Linear

F 8.742 13.276 13.617 b Linear
9.649 12.309 13.279 c Linear

G 7.456 14.441 15.324 b Zigzagged
8.281 13.521 15.177 c Zigzagged
9.025 11.533 15.931 c Zigzagged

H 8.507 10.087 18.943 b Linear
9.331 9.410 17.887 b Linear

I 6.903 9.589 23.719 c Zigzagged
J 7.980 10.539 18.293 b Linear
K 9.868 12.127 13.063 c Linear
L 7.969 10.597 18.254 b Linear

7.969 10.597 18.255 b Linear
M 7.968 13.259 14.687 b Linear

7.968 13.259 14.688 b Linear
N 7.581 10.387 19.439 b Linear

7.581 10.387 19.439 b linear
O 9.306 9.445 18.111 b Linear

9.306 9.445 18.111 b Linear
P 7.733 9.526 21.196 b Zigzagged

7.733 9.526 21.196 b Zigzagged
Q 7.500 12.300 17.088 c Linear

7.500 12.300 17.088 c Linear
R 8.560 13.268 14.186 c Linear

8.560 13.268 14.186 c Linear
S 7.829 13.975 15.743 b Zigzagged

7.829 13.975 15.743 b Zigzagged
T 7.135 10.876 20.431 c Zigzagged

7.442 10.043 22.177 c Zigzagged
U 9.183 13.104 13.198 c Linear

9.750 12.673 13.044 c Linear
V 7.235 11.743 19.066 c Zigzagged

7.293 10.763 20.544 c Zigzagged
W 7.772 9.123 23.078 c Zigzagged
X 7.302 13.266 16.788 b Linear
Y 9.228 13.127 13.254 b Linear



An additional analysis has been carried out to quantify the

similarity of the structures within the classes: for all structures

the hydrogen-bonding pattern was determined as described by

two variables. As estrone has only one hydrogen-bond donor

and only one acceptor, the bonding pattern can only exist in

the form of chains. Thus, the axis along which the chain is

directed is given, as well as the form of the chain: linear or

zigzag. In all cases the structure pairs with identical and similar

similarity values show an identical scheme of hydrogen-bond

chains. The hydrogen-bonding patterns are given in Table 3

and support the clustering found by visual analysis of the

structures.

4. Experimental

For both data sets the ReDF was used with a bin size of 0.02 AÊ

and in a domain of [2,25] AÊ . The bin size was chosen such that

the high intensity peaks were clearly visible. Below 2 AÊ there

is mostly intramolecular information, which does not describe

crystal packing and is therefore not included in the chosen

domain. The distance up to which the ReDF is calculated,

25 AÊ , is found to be the smallest distance containing enough

informative peaks and is used for both data sets. When

calculating the dissimilarities between the ReDFs with the

WCC measure, a triangle is used of 0.6 AÊ , which is about half a

bond length. Much larger and much smaller values showed

worse clustering results.

The descriptor is validated for both data sets, by grouping

all dissimilarities calculated with the descriptor into the

dissimilarity classes, as de®ned earlier. The median, minimal

and maximal dissimilarity values for the classes can be

compared and ideally show distinct classes. The larger the

overlap between two dissimilarity classes, the worse the

descriptor. The better the trend in the calculated dissimilarity

values, the better the descriptor.

In addition to this, the calculated dissimilarities are used to

cluster the crystal structures into a dendrogram using hier-

archical average-linkage clustering. The dendrogram can be

cut at a height yielding a certain number of clusters. Cutting at

a small height will give many clusters, while cutting at a large

height will give only a few clusters. The height at which the

dendrogram is cut is chosen to give the number of clusters that

matches the number of classes de®ned for that data set.

Finally, the simulated estrone structures are matched

against the experimentally determined ESTRON10 structure

to ®nd the structure with the same packing. This is done by

calculating the ReDF for the experimental and simulated

structures and calculating the dissimilarity between

ESTRON10 and all of the simulated structures. The structure

with the smallest dissimilarity to ESTRON10 is identi®ed to

have the same packing.

The simulated structures are not matched against the

ESTRON11 polymorph which also has P212121 symmetry,

because the hydroxyl group in ESTRON11 points in a

different direction to that in the simulated structure, leading to

a different packing. Neither were they matched against

ESTRON12 which has a different space-group symmetry.
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Figure 5
Box plot for dissimilarities between the two de®ned dissimilarity classes
(within-cluster and between-cluster) calculated for the cephalosporin
structures with the ReDF.

Figure 6
Box plot for dissimilarities between the two de®ned dissimilarity classes
(within-cluster and between-cluster) calculated for the cephalosporin
structures using powder diffraction data (see De Gelder et al., 2001).

Figure 7
Box plot for dissimilarities between the estrone crystal structures grouped
by the three dissimilarity classes as de®ned in Table 2, calculated with the
ReDF. The widths of the boxes are proportional to the number of objects
in that class. The circles in this plot indicate dissimilarities that fall outside
the fourth quantile of the distribution.

Figure 8
Dendrogram for the cephalosporin data set calculated with the optimized
descriptor for the 20 structures with average linkages. The seven structure
classes that are compared with the known classes (A, B, C, D, E, F, N)
were determined by cutting the dendrogram at a height of 0.4.



Neither experimental structure has a corresponding structure

in the simulated data set.

The calculation of ReDF descriptions for crystal structures

and dissimilarity measures is implemented in C++. The clus-

tering of structures based on their dissimilarity matrix is

carried out in R (Gentleman & Ihaka, 1996) with the average

linkage method. Calculations were performed on both Solaris

and GNU/Linux systems.

5. Results

5.1. Dissimilarity classes

The descriptor is validated by calculating the dissimilarity

values between all pairs of crystal structures. The dissimilarity

values calculated for the cephalosporin data set are shown as

box plots in Fig. 5, where the within-cluster and between-

cluster groupings are based on the known classi®cation. As

desired, the two medians show a rise going from the within-

cluster class to the between-cluster class. There is, however, a

slight overlap between the two dissimilarity classes. The

calculated dissimilarities on the basis of powder diffraction

patterns (De Gelder et al., 2001) are shown in Fig. 6 and show

the same increase for the median and overlap, although the

separation of the classes is better with the ReDF descriptor.

The results for the estrone data set are plotted as box plots

in Fig. 7. The calculated dissimilarities are an order of

magnitude larger than those for the cephalosporin set. This is

caused by the higher intensities of the peaks in the estrone

ReDFs. The medians in the plot show a gradual rise going from

the identical class to the dissimilar class. This is what one

would expect, but the ®gure shows that the two most dissimilar

classes are not fully separated. The identical class is completely

separated from the other two dissimilarity classes.

5.2. Dendrograms and partitionings

The dendrogram determined for

the cephalosporin data set with the

new descriptor using average

linkage is given in Fig. 8. Given a

properly chosen height, it predicts

the true classes without errors.

Partitioning the dendrogram into

seven clusters was done by cutting

the tree at a height of 0.4 (hori-

zontal line).

The use of the ReDF descriptor

for the experimental data set was

compared with the dendrogram

determined on the basis of powder

diffraction patterns (see Fig. 5d in

De Gelder et al., 2001). The latter

shows a clustering which is essen-

tially correct, but the dendrogram

based on the ReDF gives a better

discrimination of the separate

groups.

The dendrogram for the 48 crystal structures of estrone was

calculated with the average linkage from the ReDF-generated

dissimilarities and is given in Fig. 9. The dendrogram shows

that the crystal structures which are known to have a dissim-

ilarity in the identical class (clusters L±S) are correctly

grouped together. The structures from cluster B, with dissim-

ilarities in the similar class are grouped together, but cluster A,

also with dissimilarities in the similar class, is scattered over

the right hand side of the dendrogram. This re¯ects the fact

that the dissimilarities for the two dissimilarity classes have an

overlap (see Fig. 7). A partitioning with 25 clusters is gener-

ated from the dendrogram by cutting at a height of 0.45

(horizontal line).

5.3. Matching ESTRON10

In the case of the simulated estrone structure, it is inter-

esting to know if the method is able to tell which simulated
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Figure 9
Dendrogram of the 48 structures in the estrone data set clustered with the average linkage using the
dissimilarity values calculated with the optimized descriptor. The 25 clusters that are compared with the
validation set were determined by cutting the dendrogram at a height of 0.44 (horizontal line). Object
labels are taken from Table 3.

Figure 10
Dissimilarities between the experimentally found polymorph
(ESTRON10) and all simulated estrone structures (1±48). Structures 6
and 1 have the same packing as the ESTRON10, and are identi®ed with
the new descriptor.



structure matches an experimental structure. This has been

done for ESTRON10 and the results are given in Fig. 10. The

ReDF for ESTRON10 is calculated in the same way as for the

simulated structures, and the dissimilarity measure is able to

identify structures 6 and 1 having the same packing. Structures

6 and 1 both belong to cluster A with a dissimilarity between

them in the similar class.

The large dissimilarity between the simulated structures and

ESTRON10 is due to the fact that the set of simulated

structures is the result of a molecular mechanics optimization.

Force-®eld artifacts lead to longer unit-cell axes than experi-

mentally found; therefore, the y scales of Fig. 10 and Fig. 7 are

not directly comparable. The important thing here is that the

order of dissimilarities is correct. It also makes comparing the

dissimilarities of ESTRON10 versus 6 and 1 with the dissim-

ilarity of ESTRON10 versus the third most ESTRON10-like

compound less intuitive; the small differences in those three

values do not necessarily indicate that the third structure has

almost the same packing as ESTRON10 as structure 6 does.

6. Conclusions

This article presents a new computational method to compare

crystal structures. It is conceptually easy and contains only a

few parameters to tune; within broad ranges, the exact values

of these parameters have little in¯uence on the results. The

method is, therefore, very general. It correctly shows

increasing dissimilarity values when going from identical

crystal structures to similar, and ®nally to dissimilar structures.

It is dif®cult to order dissimilar structures in a meaningful way

and, therefore, the main use of the descriptor is twofold: to

gather similar structures from a large set and to recognize the

most similar structure from a set of candidate structures. Both

have numerous and important applications.

This research was sponsored by the NWO, the Netherlands

Organization for Scienti®c Research.
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